
DSC 2001 Proceedings of the 2nd International
Workshop on Distributed Statistical Computing

March 15-17, Vienna, Austria
http://www.ci.tuwien.ac.at/Conferences/DSC-2001

K. Hornik & F. Leisch (eds.) ISSN 1609-395X

Literate Statistical Practice

A.J. Rossini∗

Abstract

Literate Statistical Practice (LSP) is an method for statistical practice
which suggests that documentation and specification occur at the same time
as statistical coding. It applies literate programming Knuth (1992) to the
practice of statistics. We discuss 2 different approaches for LSP, one currently
implemented using Emacs with Noweb and Emacs Speaks Statistics (ESS),
and the other developed based on eXtensible Markup Language (XML) tools.
The interference needed to change an individual’s habits comes at a high cost,
and good tools are critical for encouraging people to switch to a more literate
style. We discuss why LSP can help, and suggest how ESS can ease the burden
placed on the analyst.

Keywords: Data Analysis, Programming Tools, User Interfaces, Literate Pro-
gramming, Reproducible Research.

1 Introduction

In statistics, the ability to document both programming language coding as well as
mathematical thought is critical to understandable, explainable, and reproducible
data analysis. We will refer to the activities involved in statistical research and data
analysis as statistical practice. These activities often involve computing, ranging
from finding reference and background material to programming and computation.

Literate Statistical Practice is a programming methodology, derived from Lit-
erate Programming, which encourages the construction of documentation for data
management and statistical analysis as the code for it is produced. All code and
∗Departments of Biostatistics, University of Washington and Fred Hutchinson Cancer Research

Center, Seattle, WA, USA. This work supported by the Center for AIDS Research, UW; and the
Statistical Center for HIV/AIDS Research and Prevention, FHCRC.

Proceedings of DSC 2001 2

documentation is interweaved into each literate document. The resulting document
should provide a clear description of the paths taken during the analyses to pro-
duce the working dataset, descriptive, exploratory, and confirmatory analyses. This
should describe results and lessons learned, both substantiative and for statistical
practice, as well as a means to reproduce all steps, even those not used in a concise
reconstruction, which were taken in the analysis.

Literate Programming Knuth (1992) describes an approach for combining code
and documentation in a source file which can be woven into a description of the
processes, algorithms, and results obtained from the system and tangled into the
actual code. The goal of literate programming is to flexibly the notion of pretty-
printed code plus documentation to allow for maximum documentation efficiency
rather than compiler or interpreter efficiency. The two primary steps in constructing
the results from the literate document are tangling, which produces code files, and
weaving, which produces documentation files. The initial work was done in a
language-specific form for Pascal (Web), with the intention of documenting the
TEXprogram. This was later extended to C (CWeb). Further research took two
forms, language-independent work such as Noweb, Nuweb, and Funnelweb, and
their supporting and contributed facilities, and language-specific implementations,
which provide tighter integration.

Literate Programming has been applied in the past to statistical practice. Prob-
ably the earliest work was simply to use Literate Programming for writing statistical
software in compiled languages such as C or Fortran. Further extensions include
the use of literate programming for the production of dataset codebooks (V. Carey,
Seminar, Fall 1993, Harvard). RevWeb, work on reviveable analyses Lang and Wolf
(1997–2001), relates to the work on reproducible research Schwab et al. (1996) as
done in a non-literate fashion by (Buckheit and Donoho, 1995), and discussed by
(deLeeuw, 1996). However, much of this work was intended for reproduction rather
than creation. In 1997, the creation of Emacs modes for Noweb support lead to the
combination of ESS with Noweb, to provide a tool for allowing efficient interactive
analysis. Mark Lunt refactored this code during 1999 to construct a better noweb
interface and integrate this tightly with ESS, no longer requiring Noweb to run
analyses. Current ideas include the development of tools which clean up the user
interface.

Other programming methodologies do exist and describe different styles to pro-
ducing code. Some of the more popular approaches include structured programming
(Niklaus Wirth), aspect programming, and extreme programming. Structured pro-
gramming is the approach of hiding tasks within reusable functions and subroutines.
Extreme programming is a novel philosophy, which is realized in the use of pairs-
programming (2 programmers per workstation), writing test-cases prior to code,
and the use of disposable CRC (class, responsibility, and collaborator) cards for
constructing the design. Aspect programming is the approach to object-oriented
programming which emphasizes reflection and the modularization of cross-cutting
concerns through the use of a new software module level, the aspect. It is difficult to
see how these approaches can be applied to statistical practice, though it is possible
that the extreme programming approach might work.

Tools are critical to literate statistical practice, and should be minimally intru-

Proceedings of DSC 2001 3

sive to the statistician. One of the hardest tasks known is to convince a competent
computer user to switch from a preferred computing environment to a new one.
Users are quite hesitant, usually with good reason, to learn a new ways. This can
be seen in the common editor wars, which are pointless attempts to convince people
to switch to tools when they don’t want to.

Integrated Development Environments (IDEs) combine features and tools in a
single interface in an attempt to increase programmer productivity and efficiency.
The increased speed in commercial software development time over the last decade
can be partially attributed to the use of IDEs and similar Rapid Application De-
velopment (RAD) tools and methodologies. In the field of statistics, programming
is an important skill which can be augmented and enhanced by the right tools and
environment. This is especially true with the rise of computational analysis tools
such as resampling methods (including bootstrap, jackknife approaches) as well as
Markov Chain Monte Carlo (MCMC) sampling (Gibbs, Metropolis–Hastings algo-
rithms).

With Literate Statistical Analysis, we primarily are interested in describing and
documenting statistical practice, that is, the tasks and actions which make up the
daily activity of a statistician, as well as provide a repository for results from the
analysis. This is not the only application of Literate Programming to statistical
practice; past work has included documentation of methods Lumley (1998) as well
as report generation, referring to the process of reproducing analyses on a possibly
changing data set.

This paper will focus on the use of literate programming techniques for daily
work, which means that we will examine tools for removing the burden of the
literacy tools from the statistical practitioner as well as focus on language-neutral
tools. In the field of statistics, different analytic tools are targeted for particular
styles of statistical analysis. This suggests that efficient work habits can require
switching between data analysis tools.

The next section of this paper discusses applications of Noweb, focusing on
extensions to Emacs which enhance Literate Statistical Practice. Approaches for
fully XML-coded Literate Programming are discussed. We conclude with possible
future developments and needs.

2 Noweb-based Approaches

Noweb Ramsey (1994) was probably the first literate programming tool employed
for statistical practice. This is a tool for language-independent literate programming
which focuses on building files, indices, using HTML or LATEXfor pretty-printing.
Noweb is quite suitable for data analysis, as seen by the many approaches which
have been based on it. The primary criticism for Noweb are the particular tools
available for automating document production as well as for generating documents
for viewing on paper, or through electronic viewers using PDF or HTML results.
Few people like manual construction.

Noweb is a document processing tool which takes a source file and produce both
documentation files, which LaTeX or an HTML con verter can take to produce

Proceedings of DSC 2001 4

human readable documents, and code files, which can be fed into a compiler or
interpreter for constructing an executable object. Noweb views a literate program as
being formed from chunks, which are sections of text. These chunks are categorized
as documentation or code chunks; documentation chunks are pertinent to nearby
code chunks, while code chunks form named, indexable, and reusable components
which can be embedded in other code chunks to form sections of computer programs.
The primary advantage is that code can be ordered to enhance presentation and
doesn’t have to be located near parts that it will lie next to in the final source file.

Applications of Noweb include using it for documenting compiled programs,
combining it with statistical packages, or using the file format to provide input to
statistics packages. The first can be thought of as just a programming application,
without any particular statistical focus. The second approach has been realized
with RevWeb Lang and Wolf (1997–2001), which uses Noweb and interfaces with
S-PLUS and R. This application allows for in-lining of documentation using Noweb,
and focuses on the interface with the S statistical language through the S-Plusand
R implementations. Recent extensions to RevWeb use R’s Tcl/TK interface as a
GUI. The third approach is to use the file format but necessarily use the Noweb
program for all tasks. This approach has been implemented using Emacs with
Noweb-mode to monitor the location of the cursor in the file and use either ESS as
the editing mode for statistical coding and processing, or a TeX or SGML mode for
documentation when editing in the documentation sections.

2.1 ESS and Noweb

ESS currently supports a number of interactive statistical programs as well as a
few interpreted statistical languages, including the S family of languages (recent
versions of S, S-Plus, and R), SAS, Stata and XLispStat (including extensions,
ARC and ViSta). There are various levels of support depending on the capabilities of
the program and the needs of users. Because ESS builds on the extremely powerful
Emacs editing capabilities and the Emacs ability to communicate directly with
a running process, ESS provides very powerful and uniform interaction with the
statistical programs and languages.

Emacs Speaks Statistics (ESS) provides a single keyboard interface for a family
of statistical computing tasks. The primary user tasks for which ESS is optimized
are statistical coding and interactive data analysis. Statistical coding is the writing
of computer code for data analysis. This code might be in a compilable language,
such as C or Fortran, or it might be in an interpreted language such as S-Plus, SAS,
R, XLispStat, Perl or Python. The task of entering commands for interactive data
analysis is similar. In either case, text is written in a computer language and sent
to a computer program for compilation or interpretation. The primary difference
is that the results of a small set of commands are of critical interest for review in
the analysis phase, but the results of all commands are of interest in the coding
phase. Both of these tasks can be present at the same time, for example in the use
of compiled Fortran code for optimization, which is being called from an interpreted
language, such as S-Plus, R, or XLispStat, containing the objective function to
optimize.

Proceedings of DSC 2001 5

In our work on ESS, we choose to focus on the editing interface, and work
towards interfacing the editor with the statistics package, using the Noweb file
format to determine whether to use a code or documentation editing mode. This
allows the interface to remain language neutral, by detaching it from the programs.
The ESS-Noweb interface extends ESS by

• providing a coding environment enhanced for the production of noweb docu-
ments

• adding options for submitting either a code chunk (including any or all em-
bedded code chunks) to the running statistical process

• adding options to submit a thread of chunks to the running statistical process

The form of documentation can be satisfied through the use of LATEX, SGML,
HTML, or XML markup, which can then be processed into a human readable
document.

3 XML

The Extensible Markup Language (XML), is an approach for marking up context,
and is primarily used as a WWW-based data representation standard for generalized
documents. It was based on Standardized General Markup Language (SGML), with
the intention of being similar but more basic. XML gets converted by using the
eXtensible Stylesheet Language (XSL). A program which applies XSL to XML to get
a realization of a document is referred to as an XSLT (XSL Translator). The primary
specification for an XML document is a Document-Type Definition (DTD) or similar
schema language, for example XML-Schema. One of the important justifications
for considering XML is the existence and rapid development of XML parsers and
translators for most common and not-so-common computing environments.

There are a number of basic approaches for using XML for language-independent
Literate Statistical Practice. The first is to consider XML as the documentation
markup language, as suggested in the section on Noweb. The rest are to consider
XML as the primary markup language for the entire literate document. In this ap-
proach, one can make the document, rather than just the documentation language.
This latter approach would technically be referred to as an XML application for
literate programming. In this, the literate programming component can be the
entire application (as discussed in Section 3.1) or just a modular component (see
Section 3.2).

SWEB, (Sperberg-McQueen, 1993–1996), was an early approach for Literate
Programming, using SGML. It has a suggested tag set, but there is no real imple-
mentation of a translator. SGML is extensible and can include a tag set similar to
Noweb, as demonstrated by SWEB. However, tools for handling SGML documents
are difficult and complex to develop. This has inhibited the use of SGML, and
encouraged the development of XML, which is a simplified form which allows for
markup.

Proceedings of DSC 2001 6

Current language-neutral approaches for this include ESS and the XML Author-
ing Environment for Emacs Kinnucan (2001), which uses XSLT for producing the
final form of documentation. Some work is currently needed to construct, in gen-
eral, the code files. Another approach is SNAKE, Statistics Needs Another Krazy
Environment, currently under development. This latter is written in Python, and
uses Narval and Piper, a python-based peer-to-peer control system, for constructing
the XML document which contains the components for the literate document, as
well as interfaces to statistical software systems.

Language-specific approaches are currently under development by the Omega-
hat project, and include a roundtrip environment based on embedding R within
XALAN, an XSLT processor, and output from that. This should be easily extendible
to any language with Omegahat support and extensions, including Omegahat, S,
R, and LispStat. Initial work seems to be targeted at reproducible research and
teaching, but probably will be extendible to general statistical practice.

3.1 LPML

There are a number of projects looking at approaches for language-neutral literate
programming in XML. One such approach, LPML, (Roberts, 1998–2000) takes a
literate programming presentation which is coded in markup language. We use their
description for the tag-set used.

• <litprog> This is simply the root element. Takes no attributes.

• <format name="NAME"> The format element defines a named format. Each
item may then specify which format it wants to use to generate its page. If
no other format is specified, then the ’default’ format is used.

• <object name="NAME" language="LANGUAGE" item="START" variant="VARIANT"/>
The object element defines an output file. The variant feature will allow se-
lection of certain pieces and rejection of others when tangling multiple objects
from a single presentation. If a piece is shared by two variants, then it won’t
have a variant tag.

• <item name="NAME" label="LABEL" format="FORMAT"> Each main item de-
fines a page of documentation; sub-items may follow each main item. A
sub-item is defined as an item whose name has a period in it The documen-
tation and code for a sub-item is appended to its parent’s page under an
italicized heading, and a link anchor is created using the post-period part of
its name, so that in the above example, the page "tangle.html" will have
a link anchor . The list of items is available in the
[##itemlist##] tag; sub-items are in a second level of list. Each item’s list
heading contains a link to its documentation page and this effectively creates
a table of contents.

• <piece variant="VARIANT" add-to="ADDTO"> Items define the documenta-
tion, and pieces define the code output. Each piece must be embedded in an
item. If a piece has a variant attribute, then it will only be included in objects

Proceedings of DSC 2001 7

for which it matches the variant spec. It will be filtered out of others. For
finer control over variants, you can also embed a <variant> tag into a piece.
The primary application for the variant system is documentation of porting
projects across OS or languages. Both variants can thus be tangled from the
same presentation, and yet still share patterns

The add-to attribute is optional; if present, it causes the piece to be added,
not to the currently active item, but to the item named, similar to the Noweb
feature.

• <variant name="VARIANT">

When used within a ¡piece¿, makes a part of the piece subject to suppression.
Useful for operating system or language-specific code.

• <insert name="NAME"/>

Used for tangling together pieces of code, as done in Noweb and other literate
programming systems, to construct compilable or interpretable files.

3.2 LSPML and Modular DTDs

The alternative approach to constructing a single DTD, is to extend a modular
DTD with markup tags for literate programming. For this approach, we consider
the Noweb and Nuweb approaches of code chunks and scraps, while letting XHTML,
DocBook, or similar text-style DTDs, provide the overall document and code doc-
umentation structure. In this approach, we restrict ourselves to 3 additional tags:

• <lspml:codechunk name="" href="" variant="" file=""/> Code</lspml:codechunk>

For specifying code to be tangled. Variant allows for setting conditional lan-
guage, operating system, or similar computing-environment settings, based
on the results desired.

• <lspml:insertCodeChunk name="" href=""/>

For specification of recursive tangling.

• <lspml:index name="" href="">Code or Docs to index</lspml:index>

Specifically for hyperlinks and indexing of the program-specific code and doc-
umentation.

One critical decision is whether to have code as character data (CDATA) or
parsed character data (PCDATA) as specified above. One allows for the use of <
as a character, and the other insists on < as the representation; this is true for
all special XML entities used for denoting markup. This is primarily of importance
for document editing, since the translator will not care how it ends up producing
the final code file. Current work suggests the use of CDATA for readability, but
it will be simple to have editors and editing modes handle this appropriately with
PCDATA. Another critical issue is the use of specific indexing tags. While we
provide an example above, there are XML indexing systems and tools which provide

Proceedings of DSC 2001 8

the needed resources, including RDF (Resource Definition Format) and RSS (Real
Simple Syndication) which allow for the construction of indices and summaries from
the XML document. Generally, it is better to let modular components and thier
corresponding tools handle tasks as needed.

4 Literary Styles

There are many literary styles that are possible. The style reflects a combination
of how the statistical practitioner views the problem as well as the message to be
conveyed to the target audience. While literate programming assumes a minimal
level of programming competence by the reader, literate statistical practice has
many possible targets, including other statisticians, students actively learning the
desired material, as well as scientists with minimal statistical background. We
present 2 styles which can be considered examples of use.

The first style will be referred to as the Consultant’s Style. This style uses the
LATEXarticle format, sectioning the various components of a short-term consulting
project. The sections are ordered as such

1. introduction to the problem,

2. planned approach,

3. data management,

4. descriptive statistics,

5. inferential statistics,

6. conclusions and lessons for the analyst to remember, including discussion,
description, and bibliography of methods employed and the practical issues
(coding, data handling) associated with the methods,

7. the concluding report for the consulting client.

Appendices might contain the dataset, the codebook, and links to or copies of client-
supplied background material, if not incorporated in the introduction. The general
tone is that of a scholarly article.

The second style is referred to as the institutional memory approach. This style
primarily consists of documenting, in a program of research, how mathematics is
implemented. Often, the simplest appraoch to describing mathematics is not the
simplest approach for computing the same mathematics. This becomes an issue
when a researcher starts working with new colleagues on an ongoing project; for
example, new students of a professor who will be working in an area that numerous
others have done research in. This approach documents both intelligence as well
as past folly in an attempt to minimize repeated mistakes. This document style,
as implemented, uses the LATEXreport style, with the initial chapter reading like a
journal article, and subsequent chapters containing individual work by collaborating
researchers working on pieces of the research program. One prime example of this

Proceedings of DSC 2001 9

is the work on Reproducible Research by the Stanford Exploratory Project group
in the Stanford Geophysics department.

There are many other possible styles for literate statistical practice, and within
a literary style, there is much flexibility in terms of presentation. However, com-
mon sense should suggest that content such as figures and plots should have the
corresponding code-chunk accessible if not actually nearby, and that while data
management can be moved to an appendix, the actual code for reconstructing the
dataset from a copy of the original is very critical for documenting the analysis
process.

5 Remarks

Literate Statistical Practice has a number of obvious benefits. First, the results are
contained in a thorough and presentable document of the thought process involved.
In addition, there is an obvious approach for reproducing the results. Tools are
currently under development to remove the burden on the statistical practitioner.

However, there are a number of problems with LSP. The first and foremost is the
need to change one’s development tools. While this seems to have the least philo-
sophical effect, it is a high-impact practical problem, necessitating a slow-down in
productivity while new tools and practices are developed into habits. Another se-
vere cost is that LSA front-loads the need to think; unless sufficient consideration of
the approach is developed at the beginning, prior to actual coding or data analysis,
large delays can be created as useless code is constructed. There is an argument
that enforcing discipline by penalizing the lack of discipline is a positive learning
experience, but it can be very discouraging to the practitioner who is experimenting
with the approach. The wasted time when this happens is definitely not positive
feedback. So the gains from literate statistical analysis are not free, in that they
require a great deal of discipline in the construction of the document.

LSP forms a component which assists in the production of carefully considered
data analysis. Experience by the author has suggested that LSP is quite useful and
efficient for documenting statistical consulting as well as for collaboration revolving
around a single study, with perhaps multiple datasets. The key unit of documen-
tation, in the author’s experience, is a single or closely related group of scientific
questions. The use of Noweb-derived approaches, using ESS and AUC-TeX with
targeted Makefiles, has resulted in a platform for efficient production.

References

Jonathan B. Buckheit and David L. Donoho. Wavelab and reproducible research.
Technical report, Stanford University Statistics Department, 1995.

Jan deLeeuw. Reproducible research: The bottom line. Technical Re-
port 301, UCLA Statistics Department, 1996. Available from J. Deleeuw,
deleeuw@stat.ucla.edu; recently added to the UCLA tech report list, hence the
difference between the number and the year written.

Proceedings of DSC 2001 10

Paul Kinnucan. Xae: Xml authoring environment for emacs. WWW, 2001.

Donald E. Knuth. Literate Programming. Number 27 in CSLI Lecture Notes. Center
for the Study of Language and Information, 1992.

Lorenz Lang and Hans Peter Wolf. The REVWEB Manual for Splus in
Windows. Uni. Bielefeld, Germany, 1997–2001. http://www.wiwi.uni-
bielefeld.de/StatCompSci/software/revweb/revweb.html.

Thomas Lumley. Survival analysis in xlisp-stat: a semiliterate program. Journal of
Statistical Software, 3(2), 1998.

Norman Ramsey. Literate programming simplified. IEEE Software, 11(5):97–105,
September 1994.

Michael Roberts. WWW, 1998–2000. http://www.vivtek.com/lpml/language.html.

M. Schwab, M. Karrenbach, and Jon Claerbout. Making scientific computations re-
producible. Technical report, Stanford University, Stanford Exploration Project,
1996.

C. M. Sperberg-McQueen. Sweb: an sgml tag set for literate programming. WWW,
1993–1996. http://www.uic.edu/˜cmsmcq/tech/sweb/sweb.html.

	Introduction
	Noweb-based Approaches
	ESS and Noweb

	XML
	LPML
	LSPML and Modular DTDs

	Literary Styles
	Remarks

