Introduction

• R is a powerful, high level language.

• As R is used for larger programs there is a need for tools to
 – help make code more reliable and robust
 – help improve performance

• This talk outlines three approaches:
 – name space management
 – code analysis tools
 – byte code compilation

Why Name Spaces

Two issues:

• static binding of globals

• hiding internal functions

Common solution: name space management tools.

Static Binding of Globals

• R functions usually use other functions and variables:

\[
 f <- \text{function}(z) \quad 1/\sqrt{2 \pi} \cdot \exp(-z^2/2)
\]

• Intent: \(\exp, \sqrt{\text{pt}} \) from base.

• Dynamic global environment: definitions in base can be
 masked.
Hiding Internal Functions

Some useful programming guidelines:

- Build more complex functions from simpler ones.
- Create and (re)use functional building blocks.
- A function too large to fit in an editor window may be too complex.

Problem: All package variables are globally visible

- Lots of little functions means clutter for user.
- Lots of functions means name conflicts more likely.
- Consequence: often use big functions with repeated code.

Name Spaces for Packages

Starting with 1.7.0 a package can have a name space:

- Only explicitly exported variables are visible when attached or imported.
- Variables needed from other packages can be imported.
- Imported packages are loaded; may not be attached.

Name Spaces for Packages (cont.)

Adding a name space to a package involves:

- Adding a **NAMESPACE** file
- Replacing `require` calls by `import` directives.
- Replacing `.First.lib` by `.onLoad` (and maybe `.onAttach`).

NAMESPACE File Directives

- `export`
  ```r
  export(as.stepfun, ecdf, is.stepfun, stepfun)
  ```
- `exportPattern`
  ```r
  exportPattern("\.test$")
  ```
- `import`
  ```r
  import(mva)
  ```
- `importFrom`
  ```r
  importFrom(stepfun, as.stepfun)
  ```
NAMESPACE File Directives (cont.)

- useDynLib
 useDynLib(stats)
- S3method
 S3method(print, dendrogram)

NAME SPACE and Method Dispatch

- S3 dispatch is based on combining generic and class name.
 - no hope of private classes
- Looked up in environment where generic is called.
- Problem: if a package is imported but not attached its methods may not be visible at the call site.

NAME SPACE and Method Dispatch (cont.)

- One solution: register S3 methods with the generic.
 - methods are always available to the generic.
 - methods need not be exported
 * enforces calling methods only via generic.
 * simplifies author/maintainer’s task
- Name space integration is conceptually simpler for S4 classes, methods, and generic functions.
- The current implementation is evolving and may become simpler.
Name Space Odds and Ends

- Name spaces are sealed.
 - cannot add internal variables, imports, exports
 - cannot change values by assignment
 - simplifies implementation
 - helps with byte code compilation
- Exports can be accessed by “fully qualified name”, e.g. `stats::ppr`.
- Internal variables can be accessed using a triple colon, e.g. `stats:::vcov.coxph`.

Source Code Analysis

- R provides a powerful infrastructure for managing test code.
- Test code alone cannot cover all possible execution paths.
- Source code analysis provides a complementary approach.
- Source code analysis examines code for possibly erroneous constructs:
 - using variables that are not defined
 - calling functions with the wrong number of arguments
 - calling functions with incorrect argument types
- Name spaces help to make checks more precise.

Some Source Code Analysis Tools

- The package `codetools` provides some experimental tools:
 - checkUsage checks individual functions.
 - checkUsagePackage checks a loaded package.
- It is likely that these will eventually be merged into the tools package.

An Artificial Example

```r
g<-function(x, y = TRUE) {
  exp <- y
  w <- x
  y <- x
  if (exp) exp(x+3) + ext(z-3)
  else log(x, bace=2)
}
```

Results of a code analysis:

```r
> checkUsage(g,name="g")
g: no visible global function definition for 'ext'
g: no visible binding for global variable 'z'
g: possible error in log(x, bace = 2): unused argument(s)
  (bace ...)
g: local variable 'w' assigned but may not be used
```
An Artificial Example (cont.)

A More Sensitive Analysis:

```r
> checkUsage(g, name="g", all=TRUE)
g: local variable 'exp' may shadow global value
g: no visible global function definition for 'ext'
g: no visible binding for global variable 'z'
g: possible error in log(x, bace = 2): unused argument(s) (bace ...)
g: local variable 'exp' used as function with no apparent local function definition
g: local variable 'w' assigned but may not be used
g: parameter 'y' changed by assignment
```

Issues and Tradeoffs

• Finding the right sensitivity is challenging
 – high sensitivity causes too many false positives
 – low sensitivity misses too many real errors
• Current approach allows tuning by various parameters
• Another option is to attempt to prioritize messages
 – has had some successes on Linux kernel code

Issues and Tradeoffs (cont.)

• More sophisticated checks are needed
• Are user-supplied checks possible?
• Inferred or estimated type information may help
• Intra-procedural analysis may also help
• Partial evaluation may be useful
• May also be able to detect possible inefficiencies
• Source annotation mechanisms may help

Profiling

• Rprof takes snapshots of call stack
• summaryRprof reports cumulative time in each function.
• Tools to show more detail may help.
• One example: call graph color coded by total time in function.
• Package profTools contains some first steps.
Byte Code Compilation

- Compilation can improve efficiency:
 - user code will run faster
 - less native system code needed

- Developing a compiler can clarify the language:
 - features that are hard to compile are hard to understand

- Code analysis is closely related to compilation
 - code analysis for compilation is more conservative
 - code analysis for correctness is more speculative

A Simple Example

- Simplified normal density function:
 \[
 f<-function(x, mu=0, sigma=1)
 \frac{1}{\sqrt{2\pi}} \exp\left(-0.5 \left(\frac{x - mu}{sigma}\right)^2\right) / sigma
 \]

- Compiled with
 \[
 fc<-cmpfun(f)
 \]

Generated Code

- Byte code and assembly code for a stack machine:

 | 16 | 1 | LDCONST 0.398942 | push \(\frac{1}{\sqrt{2\pi}} \) |
 | 16 | 2 | LDCONST -0.5 | push constant \(-0.5\) |
 | 20 | 3 | GETVAR x | get, push x |
 | 20 | 4 | GETVAR mu | get, push mu |
 | 45 | 5 | SUB | subtract |
 | 20 | 5 | GETVAR sigma | get, push sigma |
 | 47 | 6 | DIV | divide |
 | 16 | 7 | LDCONST 2 | push 2 |
 | 48 | 8 | EXPT | pop \(x\), \(y\), push \(x^y\) |
 | 46 | 9 | MUL | multiply |
 | 50 | 10 | EXP | pop \(x\), push \(e^x\) |
 | 46 | 11 | MUL | multiply |
 | 20 | 12 | GETVAR sigma | get, push sigma |
 | 47 | 13 | DIV | divide |
 | 1 | 14 | RETURN | pop, return value |

Generated Code (cont.)

- The compiler
 - folds constant expressions like \(\frac{1}{\sqrt{2\pi}} \)
 - inlines basic arithmetic functions

- Some timings for 1,000,000 repetitions:

<table>
<thead>
<tr>
<th>Function</th>
<th>(x = 1)</th>
<th>(x = \text{seq}(0,3,\text{len}=5))</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>14.62</td>
<td>17.75</td>
</tr>
<tr>
<td>fc</td>
<td>3.95</td>
<td>7.67</td>
</tr>
<tr>
<td>dnorm</td>
<td>4.59</td>
<td>7.24</td>
</tr>
</tbody>
</table>

- Most improvement comes from constant folding.
The Virtual Machine

- byte code instruction set
- stack architecture
- similar approach to Python, Perl, many Scheme systems
- also related to JVM, .NET
- Alternatives:
 - threaded code (using GCC extensions)
 - generate C code
 - generate JVM, .NET code

Compiler Operation

- Optimizations:
 - constant folding
 - special opcodes for most SPECIALs, many BUILTINs
 - inlines simple .Internal calls: `dnorm(y, 2, 3)` is replaced by `.Internal(dnorm(y, mean = 2, sd = 3, log = FALSE))`
 - special opcodes for many .Internals
- Compiler currently uses a single recursive pass:
 - fast, but limits optimizations.

Timings and Performance

- well-vectorized code will not improve much
- some examples see substantial speedup:

<table>
<thead>
<tr>
<th>Context</th>
<th>Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marching Cubes</td>
<td>2</td>
</tr>
<tr>
<td>MCMC</td>
<td>2.5</td>
</tr>
<tr>
<td>Dynamic Programming</td>
<td>2.4</td>
</tr>
</tbody>
</table>

- internal version of `lapply` almost not needed anymore
- need to improve variable lookup
- need to improve function calling

Future Directions

- Partial evaluation when some arguments are constants
- Intra-procedural optimizations and inlining
- Run-time specialization
- Vectorized opcodes
- Declarations (sealing, scalars, types, strictness)
- Advice on possible inefficiencies
- C code generation (maybe C——)
- Compilation technology? (Lisp/ML, Haskell, Self, NESL)
Conclusions

- As R is used for more high level projects, the need for programming support tools increases.
- The highly dynamic nature of R makes creating these tools challenging.
- New language features such as annotations or declarations may help.
- Results so far are quite promising.
- Much more work remains to be done.

Obtaining the Code

- Code is still experimental
- Once it is more stable it will be merged into R
- For now, you can obtain the code at http://www.stat.uiowa.edu/~luke/R/