Fitting Finite Mixtures of Generalized Linear Regressions in R

Bettina Grün Friedrich Leisch
Vienna University of Technology University of Munich

This is a preprint of an article accepted for publication in:
Computational Statistics and Data Analysis, 2006.
http://www.elsevier.com/locate/csda

Abstract

R package flexmix provides flexible modelling of finite mixtures of regression models using the EM algorithm. Several new features of the software such as fixed and nested varying effects for mixtures of generalized linear models and multinomial regression for a-priori probabilities given concomitant variables are introduced. The use of the software in addition to model selection is demonstrated on a logistic regression example.

Key words: concomitant variable, finite mixture, fixed effect, generalized linear model, R.

1 Introduction

Finite mixtures of regression models are a popular method to model unobserved heterogeneity or to account for overdispersion in data. They are flexible models and in theory it is easy to modify and extend them by using more complex models for the component distribution functions and estimate the corresponding parameters, e.g., using the EM algorithm.

R (R Development Core Team, 2006) features several extension packages for estimation of mixture regression models, e.g., fpc for mixtures of linear regression models (Hennig, 2000) and mmcl for mixed-mode latent class regression (Buyske, 2006). However, like virtually all other (non-R) implementations, they consider only a few particular types of mixture models and
do not reflect the generality of the theoretical model class in the software design. R package *flexmix* (Leisch, 2004) tries to fill this gap by encapsulating the abstract statistical objects of interest into S4 classes and methods such that the resulting software can be easily extended.

This paper is organized as follows: Section 2 gives notation and the model class, the main new functions of *flexmix* are presented in Section 3, and we end with a short demonstration in Section 4. The latest development version of the package sources and all R code necessary to reproduce the results in this article are available from http://www.ci.tuwien.ac.at/research/mixtures.

2 Model specification

We consider finite mixtures of regression models of form

\[
H(y|x, w, \Theta) = \sum_{k=1}^{K} \pi_k(w, \alpha) F(y|x, \beta_k, \phi_k),
\]

where \(\Theta\) denotes the vector of all parameters, \(y\) the dependent, \(x\) the independent, \(w\) the concomitant variable, and \(F\) is the component specific distribution function. For component-wise generalized linear models (GLMs), \(F\) must be a member of the exponential family (McCullagh and Nelder, 1989). The component specific parameters are the regression coefficients \(\beta_k\) and dispersion parameters \(\phi_k\). The component weights \(\pi_k\) need to satisfy

\[
\sum_{k=1}^{K} \pi_k(w, \alpha) = 1 \quad \text{and} \quad \pi_k(w, \alpha) > 0, \ \forall k, w, \alpha, \quad (1)
\]

where \(\alpha\) are the parameters of the concomitant variable model.

Different concomitant variable models are possible to determine the component weights (Dayton and Macready, 1988), as the mapping function only has to fulfill condition (1). In the following a multinomial logit model for the \(\pi_k\) is assumed with the first component as baseline.

This class of finite mixtures of generalized linear models with concomitant variable models is given in McLachlan and Peel (2000, p. 145). Special cases are for example random intercept models (see Follmann and Lambert, 1989; Aitkin, 1999) where the coefficients of all independent variables are assumed to be equal over the mixture components.

Our software implementation allows to specify such equality constraints for parameters over mixture components: \((\beta'_k, \phi_k)\) may be restricted to be
equal over all components, to vary between groups of components, or to be
different for all components. Variation between groups is referred to as vary-
ing effects with one level of nesting. In addition, each (group of) components
may use different sets of covariates. Due to space restrictions we cannot
give full details of parameter estimation, but extension from standard linear
models (Grünn and Leisch, 2006) to GLMs is rather straightforward.

3 Design principles

Functions and model formulae are first class objects in the \texttt{S} language, which
allows in combination with the lexical scoping rules of \texttt{R} (Gentleman and
Ihaka, 2000) for very modular software design. Rather than using text mode
arguments used as switches within function bodies, \texttt{flexmix} uses driver func-
tions to specify all aspects of the mixture model. Users can either use the
growing collection of drivers distributed as part of \texttt{flexmix}, or write and use
their own drivers.

In a first step the (unfitted) component specific model $F(y|x, \beta_k, \phi_k)$ and
the concomitant variable model $\pi(w, \alpha)$ have to be specified. For this no
data are needed, only the names of the independent and dependent variables
and their respective interaction structure are defined.

\texttt{FLXglm()} only allows varying effects for the coefficients and the disper-
sion parameters. In this case the likelihood can be maximized separately
for each component in the M-step of the EM algorithm. If there are also
fixed and nested varying effects for the regression coefficients and dispersion
parameters, our new driver \texttt{FLXglmFix()} has to be used and the likelihood
is maximized simultaneously for all components. The design matrix is con-
structed by replicating the observations K times with suitable columns of
zeros added. Model formulae for the varying, nested varying and fixed ef-
fects have to be provided. These are evaluated by successively updating the
formula of the random effects with the formula for the fixed and then the
nested varying effects.

The concomitant variable model is specified in a similar fashion. The
default dummy driver \texttt{FLXconstant()} uses no concomitant variables and acts
only as a placeholder. For multinomial logistic regression our new function
\texttt{FLXmultinom()} can be used (see example section). The main estimation
engine of \texttt{flexmix} has changed to be able to use the new functionality, however
this are changes behind the scenes in unexported functions, all existing user
code should run unaffected.

By default, EM is initialized using random assignment of observations to
mixture components, function \texttt{stepFlexmix()} can be used to automatically
try out several initializations. We now also provide the choice of starting EM
with user-specified posteriors or (more common) posteriors from a previous
run. To select a model with a suitable number of components information
criteria such as the Akaike information criterion (AIC), the Bayesian infor-
mation criterion (BIC) and the integrated completed likelihood information
criterion (ICL; Biernacki et al., 2000) can be used.

`flexmix()` returns an object of class `flexmix` and methods defined for
this class include `show()`, `summary()` and `plot()`. `show()` gives the call, the
table of cluster assignments and the number of iterations until convergence.
Further details are given by `summary()` which provides the prior probabilities
together with the table of cluster assignments, the number of observations
with a-posteriori probability larger than `eps` and the ratio of these numbers,
which indicates how well separated the components are. In addition the like-
lihood (with degrees of freedom used), the AIC and the BIC are printed. The
default plot is a rootogram of the a-posteriori probabilities for each compo-
nent. In addition there are accessor functions for the component specific pa-
rameters (`parameters()`), for the a-posteriori probabilities (`posterior()`),
the maximum a-posteriori class assignments (`cluster()`) and the fitted val-
ues for each component (`fitted()`). More information on the estimated
parameters of the component specific and concomitant variable models can
be obtained using `refit()` and the corresponding `summary()` method (see
example section).

4 Logistic Regression Example

We now illustrate model fitting and model selection in R on simple artifi-
cial data from a mixture of binomial regression models. More examples for
both logistic regression and other members of the GLM family are provided
as part of the software package through a collection of artificial and real
world data sets, most of which have been previously used in the literature
(see references in the online help pages). Each data set can be loaded to R
with `data(name)` and the fitting of the proposed models can be replayed
using `example(name)`. Further details on these examples are given in a
user guide which can be accessed using `vignette("regression-examples",
package="flexmix")` from within R.

The artificial data considered here are sampled from a mixture distribu-
tion with three components and with varying effects for the intercept and
nested varying effects for covariate x. The mixture distribution is given by:

$$H(y|x, w, \Theta) = \sum_{s=1}^{3} \pi_s(w, \alpha) \text{Bi}(y|T, \theta_s)$$

where $\text{Bi}(\cdot|T, \theta)$ denotes the binomial distribution with success probability θ and number of trials T. The success probabilities are given by

- $\text{logit}(\theta_1) = x \beta_{2,1} + \beta_{2,1}$
- $\text{logit}(\theta_2) = x \beta_{2,1} + \beta_{3,2}$
- $\text{logit}(\theta_3) = x \beta_{3,2} + \beta_{3,3}$

where $\beta_{2,1} = (2, 0)$ and $\beta_{3,1} = (-4, 1, 3)$. The component weights depend on the variable w and are determined by

- Class 2: $\text{logit}[\pi_2(w, \alpha)] = 1 - w$
- Class 3: $\text{logit}[\pi_3(w, \alpha)] = w$.

A random sample with 200 observations is drawn from this mixture distribution for $T = 20$, x standard Gaussian and w from the set $\{0, 1\}$ with equal probability (and independent of x). The observations are plotted separately for the two levels of w in Figure 1, the plotting symbol corresponds to the true component membership. It can be clearly seen that most observations are from Class 2 for $w = 0$ and from Class 3 for $w = 1$.

In practice the true structure of the data is unknown, so we start by fitting a full model with different parameters for each component, the corresponding R code is shown in Figure 2. After loading package and data as well as setting a random seed, we define the concomitant variable model and store it in object Conc. Then we define the full model using function FLXglm() and store it in Model.1, note that the actual data have not been used so far. Finally, we fit a 3-component mixture model using nrep=5 replications of the EM algorithm and store the best in Fitted.1. Selection of the correct number of components using AIC or BIC is straightforward in this simple example, consult the user guide cited above for details. Instead, we will concentrate on determining the correct structure for the fixed and varying effects in this paper.

Figure 3 depicts the values of the intercept and coefficients for covariate x together with 95% confidence intervals. The intercepts in the three components are all different and the confidence intervals do not overlap. For x we get a completely different picture: The coefficient for Component 3 is almost zero (and hence greyed out), and the confidence intervals for the other two
Figure 1: Sample with 200 observations from a mixture of binomial regression models. The plotting symbols correspond to the true component memberships and the lines are the fitted values.

```r
> library(flexmix)
> data(BregFix)
> set.seed(4)
> Conc <- FLXmultinom(~w)
> Model.1 <- FLXglm(~x, family = "binomial")
> Fitted.1 <- stepFlexmix(cbind(yes, no) ~ 1, data = BregFix,
+  model = Model.1, k = 3, concomitant = Conc, nrep = 5)
> Model.2 <- FLXglmFix(~1, nested = list(formula = c(~x,
+  ~0), k = c(2, 1)), family = "binomial")
> Fitted.2 <- flexmix(cbind(yes, no) ~ 1, data = BregFix,
+  model = Model.2, concomitant = Conc, cluster = posterior(Fitted.1))
```

Figure 2: Fitting mixtures of binomial regression models without constraints (Model.1) and with grouped varying effects (Model.2).
components overlap. Note that the confidence intervals are not taking into account that the components have been estimated simultaneously and are not independent, hence overlaps with zero or other components should only be interpreted as hints for model selection, not as formal significance tests.

We now use function `FLXglmFix()` to specify a more parsimonious model: We have a varying effect for the intercept (formula `~1`) and restrict the first two components to have the same coefficient for x (nested formula `~x`) and the third component to have only the intercept (nested formula `~0`). The concomitant variable model remains unchanged. To get the same ordering of the components and speed up computations we initialize EM with the posteriors of the first model. Fitted.1 has a BIC of 903.57, while the BIC of Fitted.2 is 893.58, so the smaller model is prefered (AIC and ICL lead to the same result). Details of the smaller model are shown in Figure 4, all coefficients differ from zero and between components. Thus the correct model would have been obtained even without knowledge of the true data generating process. Figure 1 shows the corresponding predicted values as lines.

5 Summary & outlook

R package `flexmix` provides functionality for fitting models from a general class of mixtures of regressions. This class includes popular special cases as for example random intercept models. Model specification and estimation is possible with a consistent and convenient user interface as differences in estimation are hidden from the user.

In the future we want to work on high-level tools for model selection and diagnostics. An expedient extension of the provided model class is to allow for component specific offsets instead of only an overall offset, as this would allow to fit zero-inflated models. Another line of research are more robust models, e.g. by using a background noise component. For large numbers of observations and/or components the block matrices needed for the design of
> summary(refit(Fitted.2))

Call:
refit(Fitted.2)

Model:

Component 1:

| Estimate | Std. Error | z value | Pr(>|z|) |
|----------|------------|---------|----------|
| x | 2.00419 | 0.10094 | 19.856 < 2.2e-16 |
| (Intercept) | -4.28641 | 0.22399 | -19.137 < 2.2e-16 |

Component 2:

| Estimate | Std. Error | z value | Pr(>|z|) |
|----------|------------|---------|----------|
| x | 2.004194 | 0.100936| 19.856 < 2.2e-16 |
| (Intercept) | 1.005767 | 0.068437| 14.696 < 2.2e-16 |

Component 3:

| Estimate | Std. Error | z value | Pr(>|z|) |
|----------|------------|---------|----------|
| (Intercept) | 2.89578 | 0.12147 | 23.840 < 2.2e-16 |

Concomitant Variables:

Component 2:

| Estimate | Std. Error | z value | Pr(>|z|) |
|----------|------------|---------|----------|
| (Intercept) | 1.19611 | 0.25460 | 4.6979 2.628e-06 |
| w1 | -1.23517 | 0.39169 | -3.1535 0.001614 |

Component 3:

| Estimate | Std. Error | z value | Pr(>|z|) |
|----------|------------|---------|----------|
| (Intercept) | -0.031747 | 0.318045| -0.0998 0.92049 |
| w1 | 0.783617 | 0.406279| 1.9288 0.05376 |

Figure 4: Summary and parameters of the model with nested varying effects.
nested effects may use too much memory and using sparse matrix algebra may help to reduce the effect.

Acknowledgements

This research was supported by the Austrian Academy of Sciences (ÖAW) through a DOC-FFORTE scholarship for Bettina Grün and the Austrian Science Foundation (FWF) under grant P17382.

References

